

1346 Arrowhead Road PMB#314 Duluth, MN 55811 Ph: (218) 624-5677

SUBJECT: Reflection of Metallized Spheres

The information you requested is given with some additional data that might be useful.

I. REFLECTIVITY OF METALLIZED SPHERES

The properties of a four-foot diameter metallized sphere to be used in the S band are listed below:

- Directivity or gain (radiation in the maximum direction divided by the average radiation intensity).
- 2. $G_{\rm L}=1.30$ or 1.1 db for 3kmc and a 4-foot diameter sphere (a/h = 6.1) For Linear polonization

For Circular polarization: $G_c = 1.43$ or 1.3 db mag or-1.3 db min

3. Reflection coefficient ()

The reflection coefficient for one-ohm-per-square (275A $^{\bullet}$) Aluminum film is greater than 99%.

If more information is desired these properties consult Items 5 and 6 of the List of References.

II. FREQUENCY BANDS

These classifications are commonly used but are not standard. $\ensuremath{^{\star}1}$

Page 2

Abbreviation	Meaning	Frequency Range	Band No.	Metric des ignition by wave length
v-1-f	very-low-frequency	3-30Ke	4	Myriametric
L-f	Low-frequency	30-300Ke	5	Kilmmetric
m-f	Medium-frequency	300-3,000Kc	6	Hectometric
n-f	High-frequency	3-30Me	7	Decametric
v-h-f	very-high-frequency	30-300Mc	8	Metric
o-h-f	Ultra-high-frequency	300-3,000Mc	9	Decimetric
s-h-f	Super-high-frequency	3,000-30,000Mc	10	Contimetric
e-h-f	Extremely-high-frequency	30,000-300,000Me	11	Millimetric

K band	30 kmc or 1 cm
X band	10 Kmc or 3 cm
S band	3 Kmc or 10 cm
L band	1 Kmc or 30 cm
P band	1/3 Kmc or 10 meters

The C band is also used which ranges from 5.2 to 8.5 Kmc.

III. RADAR SCATTERING CROSS SECTION (>> 2

The ratio of the power per unit solid angle scattered back toward the transmitter to the power per unit area striking the target multiplied by 4 is defined as the radar scattering cross section (cm)

For a sphere		977a2(277a)4
Small sphere	radius = a $a/\lambda < .15$	" (×)
Large sphere	radius = a $a/\lambda > 1$	Traz

For a small airplace (AT-11) 200 ft²
For a large airplace (B-17) 800 ft²

IV. EFFECTIVE AREA (AT) *3

It is defined on the area of an equivalent flat plate oriented so as to be perpendicular to the direction of the incident radiation. For a sphere $A_T=\frac{a\,\lambda}{2}$

V. DIRECTIVITY

Directivity is usually expressed as a directive gain, which is the radiation intensity in the maximum direction divided by the average radiation intensity.

The directivity or equivalent gain of a sphere a/ $\lambda \ge 5.1$ over and isotropic scatterer is: *5

For linear polarization

$$G_{T} = 1.30 \text{ or } 1.1 \text{ db}$$

For Circular polarization

 $G_{c} = 1.43$ or 1.3 db maximum or -1.3 minimum

VI. REFLECTION COEFFICIENT (P) *

The voltage reflection coefficient for a thin homogeneous conductive film suspended in free space is considered to be:

$$P = \frac{y_n - z_0}{z_n + z_0}$$

The article gives the following information on aluminum films. (conductivity = $1.1 \times 10^7 \text{m} \text{hos/} \text{m}$)

Thickness

20Å $_{\circ}$ P \geq 80 % at 900 mc $_{\circ}$ 350Å $_{\circ}$ P \geq 98.8% at 900 mc or at 2,000 are instead of 900 mc the film exhibits excellent conductive properties.

List of References

Page 4

- *1 Page 19-1 "Radio Engineering Handbook"

 Fifth Edition, By Keith Henney McGraw-Hill Book Co. 1959
- *2 Rage 804 "Reference Data for Radio Engineers"
 Published by I.T.S.T. Corp.
- *3 Page 13-10 "Mantenna Engineering Handbook" First Edition, by Henry Jasik
- *4 Page 20-4 "Radio Engineering Handbook"
 Fifth Edition, by Keith Hennay McGraw-Hill Book Co. 1959
- *5 Page 620-24 "The use of a passive spherical satellite for Communication and Propagation Experiments" by T.H. Vea, J.D. Day and R. T. Smith Vol. 48, April 1960, issues of provedings of the IRR.E.
- *6 Page 1654 "Depth of Penetration as a Measure of researchivity of This Conductive Film" by F.T. Koide, Vol. 48, September 1960 Procedings of the I.R.E.